A Schwarz lemma for hyperbolic harmonic mappings in the unit ball

نویسندگان

چکیده

Assume that $p\in [1,\infty ]$ and $u=P_{h}[\phi ]$, where $\phi \in L^{p}(\mathbb{S}^{n-1},\mathbb{R}^n)$ $u(0) = 0$. Then we obtain the sharp inequality $\lvert u(x) \rvert \le G_p(\lvert x )\lVert \phi \rVert_{L^{p}}$ for some smooth function $G_p$ vanishing at $0$. Moreover, an explicit form of constant $C_p$ in $\lVert Du(0)\rVert C_p\lVert \rVert \rVert_{L^{p}}$. These two results generalize extend known from harmonic mapping theory (D. Kalaj, Complex Anal. Oper. Theory 12 (2018), 545–554, Theorem 2.1) hyperbolic (B. Burgeth, Manuscripta Math. 77 (1992), 283–291, 1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Harmonic Quasiconformal Self-mappings of the Unit Ball

It is proved that any family of harmonic K-quasiconformal mappings {u = P [f ], u(0) = 0} of the unit ball onto itself is a uniformly Lipschitz family providing that f ∈ C. Moreover, the Lipschitz constant tends to 1 as K → 1.

متن کامل

Linear Connectivity, Schwarz-pick Lemma and Univalency Criteria for Planar Harmonic Mappings

In this paper, we first establish the Schwarz-Pick lemma of higherorder and apply it to obtain a univalency criteria for planar harmonic mappings. Then we discuss distortion theorems, Lipschitz continuity and univalency of planar harmonic mappings defined in the unit disk with linearly connected images.

متن کامل

Parabolic starlike mappings of the unit ball $B^n$

Let $f$ be a locally univalent function on the unit disk $U$. We consider the normalized extensions of $f$ to the Euclidean unit ball $B^nsubseteqmathbb{C}^n$ given by $$Phi_{n,gamma}(f)(z)=left(f(z_1),(f'(z_1))^gammahat{z}right),$$  where $gammain[0,1/2]$, $z=(z_1,hat{z})in B^n$ and $$Psi_{n,beta}(f)(z)=left(f(z_1),(frac{f(z_1)}{z_1})^betahat{z}right),$$ in which $betain[0,1]$, $f(z_1)neq 0$ a...

متن کامل

Sharp Schwarz-type Lemmas for the Spectral Unit Ball

We provide generalisations of two Schwarz-type lemmas — the first a result of Globevnik and the other due to Ransford and White — for holomorphic mappings into the spectral unit ball. The first concerns mappings of the unit disc in C into the spectral unit ball, while the second concerns self-mappings. The aforementioned results apply to holomorphic mappings that map the origin to the origin. W...

متن کامل

A Schwarz Lemma for Correspondences and Applications

A version of the Schwarz lemma for correspondences is studied. Two applications are obtained namely, the ‘non-increasing’ property of the Kobayashi metric under correspondences and a weak version of the Wong-Rosay theorem for convex, finite type domains admitting a ‘non-compact’ family of proper correspon-

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematica Scandinavica

سال: 2021

ISSN: ['0025-5521', '1903-1807']

DOI: https://doi.org/10.7146/math.scand.a-128528